《商的变化规律》教学反思

时间:2024-05-22 19:24:18
《商的变化规律》教学反思

《商的变化规律》教学反思

身为一名刚到岗的人民教师,教学是重要的任务之一,教学的心得体会可以总结在教学反思中,优秀的教学反思都具备一些什么特点呢?以下是小编整理的《商的变化规律》教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。

《商的变化规律》教学反思1

“商的变化规律”是人教版四年级上册第五单元最后一个教学内容。教材内容分两部分呈现,第一部分是商变化规律,第二部分是商不变规律。这节课我认为做得比较好的有如下几个方面:

1、故事引入的比较好,前两个规律是...

“商的变化规律”是人教版四年级上册第五单元最后一个教学内容。教材内容分两部分呈现,第一部分是商变化规律,第二部分是商不变规律。这节课我认为做得比较好的有如下几个方面:

1、故事引入的比较好,前两个规律是八戒的两关,闯关后,悟空才分饼给八戒,通过这个分饼使产生问题,“用悟空采用什么数学知识,教育八戒?”引出要学习之后才能解决问题,就来学习:课题(板书:商的变化规律),

2、结合实际改变教材内容顺序,学生发现被除数200不变,除数从2变到20,有什么变化?学生说扩大了,商从100变到10,商缩小了。除数再20变到40也扩大了,商从10变到5,商也缩小了。说明除数从上往下扩大了,商从上往下反而缩小了,反之除数从下往上缩小了,商反而扩大了。之后总结这两条规律,再利用练习,加深对被除数不变,商随着除数变化而变化的规律。

3、除数不变,商的变化规律。这个规律放手让学生通过观察、比较、讨论等教学活动教师可以适当点拨,由学生总结规律。掌握了上个内容,这个环节就相对比较简单。出示练习题巩固这个除数不变,商随着被除数变化而变化的规律。

商的不变规律,出示表格,让学生自己观察、比较、讨论等方法论证规律,说说你是怎么算的,为什么商都是7,你能写出商都是7的除法算式吗?然后说出两组比较时被除数和除数都扩大了,还可以怎么说(乘以相同的数),要注意“同时”,再比较另两组比较时被除数和除数都缩小了,(除以相同的数),商不变,最后用语言总结规律。

4、练习的设计还比较满意,尤其是最后哪道运用商不变的规律,学到如何简便运算。

不足的地方,有以下三点:

1、由于这节课的课堂容量比较大,要讲透三个规律很难,时间紧张。

2、习题的设计不够精当,比如第一道判断题的第三小题应该这样设计(30÷2)÷(6÷3),以及第三道“数学小护士”的难度有点大,因为时间不够,就要用简单一点改错题

3、回答问题没能够面向全体学生; 课堂气氛不够活跃,部分学生的积极性不够高。语言不够精练,不干脆利落,有点紧张。

《商的变化规律》教学反思2

本节课,学习了商的变化规律,让学生通过“观察——探索——交流——总结”完成学习任务,让学生在合作交流中互相启发、互相激励、共同发展。在学生获取知识的探索过程中,教师给学生提供了探索的时间和空间,让学生有展示研究成果的机会,体验成果的喜悦,感受自主探究的乐趣,激起学生的学习兴趣。

反思整个教学过程,也存在着明显的不足:首先,在讲解完规律过渡到应用时,衔接不够自然;规律应用的过程中,讲解简便运算后,总结不到位。其次学生没有足够的探究时间。每一个环节看似都很民主,但由于时间的关系,探究时学生还没有进行认真观察、独立思考,教师已经把他们的思维拉了回来。在今后的教学工作中,应扬长避短,精益求精,争取做到更好。

《商的变化规律》教学反思3

一、准确把握起点,合理的运用知识迁移,

本节课的变化规律是第五单元的教学内容,前边在第三单元中学生已经学习了“积的变化规律”,为这节课的教学打好了知识基础。我抓住并利用了这一知识基础:“我们都知道乘法和除法有着密切的关系,既然乘法中有这样的规律,在除法中是否也存在着类似的规律呢?”一句话引起了大家的思考,学生很自然的由乘法中的变化规律类推出了除法中的变化规律,既准确地找到了新知的切入点,合理的运用了知识的正迁移,又为后边学习活动的开展奠定了一个探索研究的基调——这些大胆的猜测是否正确呢?需要我们进一步的验证。这就将整节课的落脚点定位在了培养学生解决实际问题的能力上,而非仅仅是知识点的掌握上。

二、自学并经历探索研究的全过程

学生自学后,让学生经历了三次验证过程,看似有些重复,但细品起来,每次的侧重点都有所不同:第一次是使学生知道例举法是一种行之有效的研究方法,使用此方法时应尽可能多的举例,这样才有可能避免偶然性,提高正确率;第二次是让学生有意识的经历挫折,我们的猜测不总是正确的,可以通过实验来修正猜测,得出正确结论;第三次是提醒学生当研究思路出现偏差时,应学会及时调整,积极寻找新的思路继续研究,直至得出结论。三个侧重点层层递进,紧紧围绕着培养学生的探究能力展开。

在这里,知识的掌握和运用不是最终目标(其实学生在这种积极主动地研究状态下、在经历“做”的过程中,自然理解掌握了被除数、除数、商这三者的变化规律,且会印象深刻),而引领学生经历研究问题的一般过程,并在过程中培养学生认真观察、大胆推测、勇于实践、科学严谨、不轻言放弃等良好的学习品质和数学素养,是教师的出发点和落脚点。这正是新课标所倡导的数学教育理念:“使学生经历数学活动过程,获得对数学的理解的同时,在思维能力、情感态度与价值观诸方面得到发展”。

总之,本节课在教学设计时牢牢地抓住了两点:一是利用好新旧知识之间的联系和乘法中积的变化规律的迁移,引起学生的学习情趣和激情,提出猜测,展开教学;二是不仅仅将课堂教学的重点落在三个规律上,而是落脚到通过教学活动,培养学生的数学品质上,将这种“猜测、验证得出结论”的数学研究方法深入到每个学生之中,真正让学生成为一名数学知识的猜测者、研究者、发现者,从而获得学习数学的乐趣。

《商的变化规律》教学反思4

教材分析

本节课是人教版课标实验教材小学数学四年级上册第五单元中的一个知识点,它是在学习了比算乘法和笔算除法的基础上进行教学的。与旧教材相比,本知识点作了适当调整:旧教材中只研究了商不变的规律,而新教材中却改为了商的变化规律,引导学生探讨被除数不变上随除数的变化而变化的规律和除数不变商虽被除数的变化而变化的规律,这就使是这一部分知识更加系统、更加全面。

教材利用学生已有的计算技能,通过计算填表,提出问题引导学生自己思考发现商的变化规律。这部分内容渗透函数思想。这部分内容的教学可以巩固所学的计算知识,同时培养学生初步的抽象、概括能力以及善于观察、勤于思考、勇于探索的良好习惯。

学情分析

本节课从而激起学生一探究竟的兴趣。

关于商的变化规律,主要包含了商变和商不变两个内容,以前面掌握了乘法 ……此处隐藏9798个字……样变化呢?”激发学生的学习热情,并杨老师又提出要求:能不能用刚才我们掌握的方法,发现商变化的规律呢?就这一过程而言,杨老师很好地体现了教材的编排意图,并创造性地渗透了探究方法的指导,使学生在掌握知识技能的同时,学会了科学的探究方法,形成了解决问题的策略。

但细思量本节课的三个环节,就其知识难易程度而言,前两个规律是商不变性质的铺垫,商不变的性质应该是重点,也是难点。因为它牵涉到了被除数和除数同时发生变化,而这种变化还是有条件的,同时扩大或缩小相同的倍数。而杨老师的课堂教学虽然也体现出了教材的编排意图,也力求体现探究方法的渗透,但总有平均用力的感觉。我个人认为,前两个规律既然是第三个规律的铺垫,那么在探究方法的渗透上也应该成为第三个规律的铺垫。我们可以做以下设想,第一个规律,杨老师给学生示范展示“计算---观察----比较----猜测----验证-----结论”的过程,适当加以总结强化,让学生初步了解这种科学的探究方法。在探索第二个规律时,就应该适当放手,教师可以引导学生运用刚才的方法去探索规律,应该说是形成初步的数学模型。而在学习商不变的规律时,教师就应该把探究的机会完全放给学生,明确提出让学生先观察,发现谁变了,是怎么变化的?谁没变?由这个特殊的现象提出自己的猜测,然后再举例验证,最后得出一般的规律。相信这种放手让学生根据已有的数学模型,自主探索商不变的规律的做法,学生肯定兴致盎然,劲头十足。能自始至终以一种饱满的热情投入到学习中去,同时获得良好的情感体验。

对于规律教学,我也曾做过一些尝试,并就此写过一篇教学反思《教给学生有营养的数学》,现在拿出来,供老师们参考指正:

所谓有营养的数学,就是在学生学习数学知识的过程中获得终身可持续发展所需要的基本知识、基本技能、数学思想方法、科学探究态度及解决实际问题的创造能力。教给学生有营养的数学,就是说在课堂教学中,教师要让学生在观察、实验、猜测、验证、推理等数学活动中,经历数学化的过程,并在数学化的过程中渗透数学思想方法和学习方法培养,使学生能用数学的思维方式去观察、分析现实社会,解决实际问题,形成终身学习的能力,促进个体的可持续发展。

《乘法的交换律和结合律》以加法的运算定律为基础,在意义和表述上和加法的运算定律有相似之处,学生完全可以把加法的运算定律迁移到乘法的运算定律上。这里,知识技能目标很容易达到,于是,我就把本节课的重心放在过程与方法上,下面是课堂实录:

1、复习加法的运算定律

加法交换律:a+b=b+a

加法结合律:(a+b)+c=a+(b+c)

师:这里a和b是什么数?

生:a和b表示加数

师:a和b可以表示什么数?

生:任何数。

师:这就是说,只要交换两个加数的位置,和一定不变;先把前两个加数相加或先把后两个加数相加,和也不变。

2、探索乘法的交换律。

师:将a+b=b+a中的加号改为乘号,问:现在a和b变成了什么数?

生:a和b表示因数,

师:那么,请同学们猜一猜,交换两个因数的位置,积相等吗?

生1:相等。(90%的学生举手同意)

生2:不相等。(10%的学生举手同意)

师:很好。那现在认为积相等的同学组成一组,认为积不相等的同学组成第二组。拿出练习本和笔,举例证明你的猜测是否正确,并把结论写出来。

学生自主证明,师巡视。

师:现在请第二组同学推举一名代表上来汇报你的结论。

生:我起初认为交换两个因数的位置,积不相等。为了证明我的猜测是正确的,我举了一个例子:2×3,交换两个因数的位置后变为3×2,结果都是6。和我的猜测相反,说明我的猜测是错误的。我的结论是:交换两个因数的位置,积不变。

师:第二组的同学有没有不同意见?说出你的结论。

生:没有。

师:第一组同学有意见吗?

生:没有。

师:很好。那就是说,交换两个因数的位置,积不变,这就是乘法的交换律。

师:回顾小结:刚才我们根据交换两个加数的位置和不变,提出了猜想交换两个因数的位置积可能相等,可能不相等。为了验证我们的猜测,同学们举例证明了自己的猜测,得出了正确的结论:交换两个因数的位置,积不变。这里猜测的对与错并不重要,重要的是通过举例验证,无论猜测是否正确,我们都能得到正确的结论。看来,提出猜想,然后去验证,最后得出了正确的结论确实是一个好办法。

3、自主探索乘法的结合律。

师:下面我们就用刚才学到的方法,自己提出猜想,在练习本上举例验证,看一看(a×b)×c=a×(b×c)成立不成立。

生:自主探索。

师:谁愿意上来汇报自己的结论?

生:我认为(a×b)×c=a×(b×c),我举了一个例子:2×3×4,结果是24,2×(3×4),结果也是24。说明(a×b)×c=a×(b×c)。我的结论是:先把前两个因数相乘,或先把后两个因数相乘,积不变。

师:有没有不同意见?说出你的结论。

生1:我的结论是交换括号的位置,积不变。

师:括号起什么作用?

生:改变运算顺序。

师:那交换了括号,运算顺序变化了吗?是怎样变化的?

生:交换括号以后,本来先算前两个因数,现在要先算后两个因数。

师:对。这就是说等号左边是先把前两个因数相乘,等号右边是先把后两个因数相乘。积不变。同意吗?

生:同意。

(学生还出现了许多不同的说法,但意思相同,教师一一肯定,同时加以规范)

师:很好。通过我们的努力,我们知道了先把前两个因数相乘,或者先把后两个因数相乘,积都不变。能给它起个名字吗?

生:乘法结合律。

3、课堂练习

师:请同学们打开课本,齐读小精灵与一个学生的对话。

生:(齐读乘法交换律和结合律。)

师:谁能改动乘法交换律中的两个字,就把它变成加法交换律?

生:把因数变为加数,把积变成和。

师:很好。谁能只改动两个字,把乘法结合律变成加法结合律?

生:把“因”改为“加”,把“积”变成“和”。

师:太有才了。

4、全课总结(略)

本节课,学生始终处于探索的兴奋之中,满怀激情投入到自主探索之中,并从中享受到了成功的快乐。特别是让学生在练习纸上写出自己的结论,正是促进学生思考的有效方式,因为只有动笔,才有真正的思考。只有真正的思考,学生才有所得。事实证明,当堂测试中所有的同学都掌握了乘法的交换律和结合律,并能根据乘法的交换律和结合律完成一些相关的练习。本节课的可取之处在于,学生在自主探索乘法的交换律和结合律的过程中,尝试了科学的学习方法,经过老师的提升,形成了一个认知模型:认真观察――提出猜想――进行验证――得出结论,做为一种数学能力,对学生以后的学习很有帮助。

《《商的变化规律》教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式