《数学之美》读书笔记

时间:2024-05-22 19:27:57
《数学之美》读书笔记

《数学之美》读书笔记

细细品味一本名著后,大家一定对生活有了新的感悟和看法,让我们好好写份读书笔记,把你的收获和感想记录下来吧。到底应如何写读书笔记呢?以下是小编精心整理的《数学之美》读书笔记,供大家参考借鉴,希望可以帮助到有需要的朋友。

《数学之美》读书笔记1

很多人都觉得,数学是一个太高深、太理论的学科,不接近生活,对我们大多数人来说平时也根本用不到,所以没必要去理解数学。但事情真的是这样吗?

其实不然,数学一直渗透在我们生活的各个方面,尤其是在今天这个信息时代,很多简单朴素的数学思想,能发挥一般人很难想象的巨大作用。比如,计算机处理自然语言,用到的最重要工具是统计学的思想;计算机对新闻内容的分类,依靠的是数学里的余弦定理;而电子电路的基本逻辑,则来源于仅有0和1两个数字的布尔代数。

在《数学之美》里,吴军用自己在工作中使用数学的亲身经历,为我们展现了数学的重要性,以及他对数学之美的理解。吴军是“得到”App专栏《吴军的谷歌方法论》的主理人。曾先后供职于谷歌和腾讯,是著名的自然语言处理专家和搜索专家。同时,他还是位畅销书作家,除了这本《数学之美》以外,还写过《文明之光》《智能时代》《浪潮之巅》等多本畅销书。

《数学之美》读书笔记2

我是在读了吴军博士的《浪潮之巅》之后,发现推荐了《数学之美》这本书。我到豆瓣读书上看了看评价,就果断在当当上下单买了一本研读。本来我以为这是一本充满各种数学专业术语的书,读后让我非常震撼的是吴军博士居然能用非常通俗的语言将自然语言处理等高深理论解释的相当简单。在李开复博士之后,吴军博士又成为了目前备受瞩目的具有深厚技术背景的作家。对于我来说,读这本书有扫盲的功效,让我知道了很多以前不知道的东西。我的想法是在研究生阶段,不只局限于导师的研究方向,通过更加广泛的涉猎知识,去寻找一个自己喜欢的研究领域。如果找到了这样一个领域,那么我就读博士。如果没有的话,那么我想还是工作算了。

1、学科之间的联系是如此的重要

全书主要是围绕着吴军博士所研究的自然语言处理方向来讲述一些应用在这个研究领域的数学知识,用了很大篇幅讲解了将通信的原理应用到自然语言处理上所取得的'巨大成功。以前学习计算机网络的时候,学过一个香农定理。对香农的认识就从香农定理开始,因为考研会考相关的计算题。看了这本书才知道,香农的《信息论》对今天的影响真的是不可估量。通过这样一个过程,我也对以前的本科学校的学科建设产生了一些忧虑。对于培养计算机人才来说,无论是培养应用型人才,还是培养研究型人才,都应该与电子、通信有一定的交叉,这样对学生思考问题的启发与视野的开阔有着重要的作用。计算机本身就是从电子、通信、数学等学科中抽出来的新兴的学科,在发展了多年之后,我们发现它仍然需要继承一些传统。回想自己的本科四年,上的更多的课时

语言类、技术类的课程,这些课程的确对提升学生的就业有很大帮助。但是我想说的是,一个忽视数学基础、学科交叉的学校,他无法成为一所国内的一流大学。作为一个母校培养的学生,我深知改革的阻力与困难,但是我希望母校的计算机学院能越办越好。我们现在已经培养出很多高薪优秀的技术人才,我希望将来也能培养出更多的研究型人才。

2、看起来很牛的东西却用着难以置信的简单数学原理

在整本书中让我最为印象深刻的是解释Google搜索的原理,居然就是简单的布尔代数运算。这个的确让我大跌眼镜,我一直认为搜索时一个非常复杂而庞大的问题,其数学原理也是相当高深的,但是吴军博士的解释让我大开眼界。与此同时也知道了Google为什么牛,牛在哪了。搜索的原理虽然非常简单,但是搜索是一个需要对海量数据进行操作的工作。Google在海量数据的处理方面的确是相当先进的,MapReduce、BigTable等等一些技术的发明与应用使得Google在搜索上无出其右。目前分布式存储、分布式计算、数据仓库与存储等研究领域近些年来的大热也说明Google在引领研究方向上的超凡本领。

3、感谢概率老师的教诲

在大二的时候,有一个在我们学生中声望很高的概率老师,他在课程即将结束的时候跟我们说我们将的是前几章,这些事概率论与数理统计的基础。对于你们计算机的学生来时,后面的章节才是最有用的,以后一定要好好的研究,弄上一两个在你的毕业设计上就会让你毕业设计提升一个档次,有可能验收你毕业设计的老师也不懂。我当时对他的话没有特别在意,我只关心期末考试要考哪些题目,因为我那个学期的概率课基本上都在睡觉,只有他讲笑话的时候不睡。我看《数学之美》后发现马尔科夫链、贝叶斯网络之后,对以前的概率老师充满无限的敬意。我发现我们再本科阶段学习的《高等数学》、《线性代数》、《概率论与数理统计》在计算机学科应用较多的要数概率论与数理统计,还有一门我学的不好的《离散数学》在计算机中也是有着举足轻重的地位。我在看米歇尔的《机器学习》时也发现很多熟悉的概率论与数理统计的知识,这让我不得不开始考虑重新弥补自己的数学短板。我的想法是在研一这一年把概率论与数理统计、线性代数、离散数学尽我最大的努力补一补,希望他们对我今后的学习有所帮助。

4、说说作者吴军博士

吴军博士写的书对于学习计算机的学生来说,读起来有种说不出的亲切感。可能这跟他是技术出身的原因有关,流畅的文笔、质朴的文风也让人读起来很舒服。看高晓松在优酷上的《晓说》就知道,在硅谷有着众多的华裔工程师,他们很多都来自清华、北大等国内的名牌大学,这些人在美国实现着自己的梦想。吴军博士也曾是这其中的一员,我非常希望那些像吴军博士一样的牛人们能够写书或者来国内的大学做一些演讲、论坛等等,开阔一下我们的视野,传授一下做学问的经验。与此同时,我也在想为什么我们国家那么多优秀的IT人才都去了美国。

这个问题在我去苹果公司在东软信息学院组织的培训过程中得到了答案,那个南京邮电的老师讲了讲中国为什么不像美国那么有创造力。我们中国人并不缺乏创造力,很多时候是我们所处的外部环境恰恰阻碍了创新。我想那么多优秀的清华北大学子纷纷到大洋彼岸的美国,正是被美国开放的学术环境、创新氛围所吸引,每个人都有自己的梦想,他们去美国也是为了能实现自己的梦想。以前都觉得他们是不爱国,现在长大了,对于这个问题看得更清楚了一点。

我想说我们的祖国在经历了改革开放30多年的飞速发展之后,目前正处于一个关键和脆弱的时期。我们靠着人口红利取得了巨大的成就,我们能不能凭借人才红利取得更大的成就还是未知。希望有更多的人才能像李开复博士、吴军博士那样,为我们这个民族青年的成长和国家发展做出贡献。

《数学之美》读书笔记3

本书介绍了Google产品中涉及的自然语言处理、统计语言模型、中文分词、信息度量、拼音输入法、搜索引擎、网页排名、密码学等内容背后的数学原 ……此处隐藏10305个字……是科学上最高深的技术,那也是模拟我们生活中的一些基本原理。

我们今天使用的十进制,就是我们扳手指扳了十次,就进一次位。而玛雅文明他们数完了手指和脚指才开始进位,所以他们用的是二十进制。实际上阿拉伯数字是古印度人发明的,只是欧洲人不知道这些数字的真正发明人是古印度,而就把这功劳该给了“二道贩子”阿拉伯人。

语言的数学本质

任何一种语言都是一种编码方式,比如我们把一个要表达的意思,通过语言一句话表达出来,就是利用编码方式对头脑中的信息做了一次编码,编码的结果就是一串文字,听者则用这语言的解码方法获得说话者要表达的信息。

自然语言处理模型

计算机是很笨的,他们唯一会做的就是计算。自然语言处理在数学模型上是基于统计的,说一个句子是否合理,就看看他出现的可能性大小如何,可能性就是用概率来衡量,比如一个句子,出现的概率为1/10^10,另一个句子出现的概率为1/10^20,那么我们就可以说第一个句子比第二个句子更加合理。当然这要求有足够的观测值,他有大数定理在背后支持。

最早的中文分词方法

这句话:“同学们呆在图书馆看书”,如何分词?应该是这样:同学们/呆在/图书馆/看书.最先的方法是北航一老师提出的查字典方法,就是把句子从左道右扫描一遍,遇到字典里面出现的词就标示出来,遇到复合词如(北京大学)就按照最长的分词匹配,遇到不认识的字串就分割成单个字,于是中文的分词就完成了。但是这只能解决78成的分词问题,但是“像发展中国家”这种短语它是分不出来的。后来大陆用基于统计语言模型方法才解决了。

隐含马可夫模型(没这么看懂)

一直被认为是解决打多数自然语言处理问题最为快速有效的方法,大致意思是:随机过程中各个状态的概率分布,只与他的前一个状态有关。比如对于天气预报,我们只假设今天的气温只与昨天有关而与前天没有关系,这虽然不完美,但是以前不好解决的问题都可以给出近视值了。

一个让我印象深刻的观点:

小学生和中学生其实没有必要花那么多时间去读书,其觉得最主要的是孩子们的社会经验,生活能力,和那时候树立起来的志向,这将帮助他们一生。而中学生阶段花很多时间比同伴多读的课程,在大学以后可以用非常短的时间就可以读完。因为在大学阶段,人的理解能力要强很多,比如中学要花500小时才能搞明白的内容,大学可能花100小时就搞定了。学习和教育是一个人一辈子的事情,很多中学成绩好的人进入大学后有些就表现不太好了,要有不断学习的动力才行。

余弦定理和新闻分类

我在新浪干过一年多新闻,这篇认真看了一篇,很吃惊原理cos x与新闻分析也有关系啊。google的新闻服务是由计算机自动整理分类的。而传统的媒体如门户网站是让编辑读懂新闻,找到主题,再分类分级别的,真苦逼啊...计算机自动分类原理是这样:如一篇新闻有10000个词,组成一个万维向量,这个向量就代表这篇新闻,可以通过某种算法表达这个新闻主题的类型,如果两个向量的方向一致,说明对应的新闻用词一致,方向可用夹角表示,夹角可用余弦定理表示,所以当夹角的余弦值接近于1时,这两篇新闻就可以归为一类了。

没看懂的东西:

布尔代数:布尔代数把逻辑学和数学合二为一,给了我们一个全新的视角看世界...

网络爬虫的基本原来是利用了图论的广度优先搜索和深度优先搜索...

搜索引擎的结果排名用了稀疏矩阵的计算...

地图最基本的计算是利用了有限状态机和图论的最短路径...

密码学原理,最大熵模型,拼音输入法的数学模型,布隆过滤器,贝叶斯网络等等...

任何事物都有它的发展规律,当我们认识了规律后,应当在生活工作中遵循规律,希望大家透过IT规律的认识,可 以举一反三的总结学习认识规律,这样有助于自己的境界提升一个层次。

任何问题总是能找到相应的准确数学模型,一个正确的数学模型在形式上应当是简单的,一个好的方法在形式上应当也是简单的。简单才是美。

《数学之美》读书笔记8

这本书一共31章,主要介绍了这些数学方法:统计方法、统计语言模型、中文信息处理、隐含马尔科夫模型、布尔代数、图论、网页排名技术、信息论、动态规划、余弦定理、矩阵运算、信息指纹、密码学、搜索技术、数学模型、最大熵模型、拼音输入法、贝叶斯网络、句法分析、维特比算法、各个击破算法等。从第一章开始其明了幽默的语言就深深的吸引了我,让我觉得如果早一点看这本书,也许数学之于我就是另一番天地。

第一章里作者从原始人类的通信方式开始入手,人类最早利用声音进行的通信依赖于开篇给出的"编码-传输-解码"的基本原理,指出原始人的通信方式和今天的通信方式没什么不同,这世界上近现代最普遍的原理大部分都在人类发展的历史上被无意识的使用着。

第六章信息论给出了信息的度量,它是基于概率的,概率越小,其不确定性越大,信息量就越大。引入信息量就可以消除系统的不确定性,同理自然语言处理的'大量问题就是找相关的信息。信息熵的物理含义是对一个信息系统不确定性的度量,这一点与热力学中的熵概念相同,看似不同的学科之间也会有着很强的相似性。事务之间是存在联系的,要学会借鉴其他知识。

这本书里也能找到不少在学的课程知识,如大学专业课里,数电总是要比模电简单不少,而自然界里大部分的信号都属于模拟信号。所谓模拟信号,是指从时间和数值两种维度上看来都是连续变化的信号。在实际电路中,模/数转换是一个很重要的过程,将预处理的模拟信号经过模/数变换为数字信号,然后进行数字信号处理。而数字化处理有很多优点,比如功能强大、抗干扰能力强、易于传输等。

简而言之,如果没有数学,就没有数字信号处理和传输的概念,而数字信号传输在当下大规模的集成电路里是必不可少的,这是通信成功的基本要求。

作者把生活中遇到的复杂的问题,以简单清晰,直观的模型或者公式展现出来。我们可能过于注意生活中的种种奇妙现象,往往忽略了追求其理论逻辑的演绎,而这也是大部分问题的主要根源。

罗素曾经说过:"数学,如果正确地看,不但拥有真理,而且也具有至高的美";爱因斯坦也曾说过:"纯数学使我们能够发现概念和联系这些概念的规律,这些概念和规律给了我们理解自然现象的钥匙。"数学在所有科学领域起着基础和根本的作用。"哪里有数,哪里就有美".在这里,我也想把《数学之美》真诚推荐给每一位对自然、科学、生活有兴趣有热情的朋友,不管你是从事职业,读一读它,会让你受益良多。

吴军老师在《数学之美》中提到:"这本书的目的是讲道而不是讲术。很多具体的搜索技术很快会从独门绝技到普及,再到落伍,追求术的人一辈子工作很辛苦。只有掌握了搜索的本质和精髓才能永远游刃有余".回到我们日常的生活中,需要学习的东西、技术太多太多,如果一味地只为去追技术的脚步,那么我们也会很累很累。然而基本的原理却是没有怎么变化的。只见森林,不见树木,难免迷失;站在高处向下看,也许我们一直看不到底,但是站在底处却是可以看见底的。

《《数学之美》读书笔记.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式